S eI RS

BTH: ATS6EIMERSE (1)

Fif: [HEF. =i
20245FRk=F

N e 7

Gios PEKING UNIVERSITY

pEI=E AT

- RE(FILIER

FEUREW (12.15-12.30)
A HZER . EREEIITNEIOGIL
Paper Review (128255/2751-35, 8/1\EZF105%h)
BRI R NI RIREA AR B Mk B ZUR H &
15 B1TIREERS F AR R ERIEXRIE N 1-2/E
HBTUAGHIPPT, B8/EF10DHEHR + 12385
FRLWELR HEEFEMLL, #lEHEA12B318

,EE'*EEEE %1@#@ <2>

b

v

NG UNIVE RSITY

AlNNiE=RSRt3E it-Recap ey Je 50

- BIRIR, BAINMEATANLERNEIEE, HEENMATAINNLEREPRITESRT. FEBFEUR
FRIa/ MBS

» FERBIENEBNAREVAINLERSS

On-chip SRAM Off-chip DRAM

':iz ':13 :i:‘s,_“ .] ggﬁtmmm{ T, g, St P
N };]_q pe +|]+ pE // : E gmgggg *| *| *| *
OGN 0000000 | || F| ¥ ¥ OF

— < — <2 :Qb' t] t‘ EI] ljtlt] t] - - - -
SEE0nan eI
-ﬂ PE F)il—ﬂ PE F)Ii—) PE | \ il ;’ E,l 1= - - - L

i L Ooioioioigio S IS S I s
¥ 55 il o B B Py
olumn Decoder j:: :_=I;]:: ;

itH ihF S

AlNEES Y &ZE——DianNao

- ASPLOS 2014&{Eit X
+ DianNaoXJFHEMEILES&ITET 7 ZFRiTie
- WLt ERES?
- Wfaligit R L7642
- WIRASIEERA, BEILGEHE?
W RESIFAEHRE?
- DianNaoERMLPFICNN, f8XS&UTF

3.02 mm2
485 mW
65 nm
117.87X speedup over SIMD processor

Power

Technology Node

Baseline

B ER REHE

ezt ¥

DianNao: A Small-Footprint High-Throughput Accelerator
for Ubiquitous Machine-Learning

Tianshi Chen
SKLCA, ICT, China

Jia Wang
SKLCA, ICT, China

Zidong Du
SKLCA, ICT, China

Chengyong Wu
SKLCA, ICT, China

Ninghui Sun
SKLCA, ICT, China

Yunji Chen
SKLCA, ICT, China

Olivier Temam

Inria, France

Abstract

Machine-Learning tasks are becoming pervasive in a broad
range of domains, and in a broad range of systems (from
embedded systems to data centers). At the same time, a
small set of machine-learning algorithms (especially Convo-
lutional and Deep Neural Networks, i.e., CNNs and DNNs)
are proving to be state-of-the-art across many applications.
As architectures evolve towards heterogeneous multi-cores
composed of a mix of cores and accelerators, a machine-
learning accelerator can achieve the rare combination of ef-
ficiency (due to the small number of target algorithms) and
broad application scope.

Until now, most machine-learning accelerator designs
have focused on efficiently implementing the computa-
tional part of the algorithms. However, recent state-of-the-art
CNNs and DNNGs are characterized by their large size. In this
study, we design an accelerator for large-scale CNNs and
DNNs, with a special emphasis on the impact of memory on
accelerator design, performance and energy.

‘We show that it is possible to design an accelerator with
a high throughput, capable of performing 452 GOP/s (key
NN operations such as synaptic weight multiplications and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
10 post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org

ASPLOS '14, March 1-5, 2014, Salt Lake City, Utah, USA.

Copyright © 2014 ACM 978-1-4503-2305-5/14/03. .. $15.00.
hutp://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2541940.2541967

269

neurons outputs additions) in a small footprint of 3.02 mm?
and 485 mW; compared to a 128-bit 2GHz SIMD proces-
sor, the accelerator is 117.87x faster, and it can reduce the
total energy by 21.08x. The accelerator characteristics are
obtained after layout at 65nm. Such a high throughput in
a small footprint can open up the usage of state-of-the-art
machine-learning algorithms in a broad set of systems and
for a broad set of applications.

1. Introduction

As architectures evolve towards heterogeneous multi-cores
composed of a mix of cores and accelerators, designing
accelerators which realize the best possible tradeoff between
flexibility and efficiency is becoming a prominent issue.
The first question is for which category of applications
one should primarily design accelerators ? Together with
the architecture trend towards accelerators, a second si-
multaneous and significant trend in high-performance and
embedded applications is developing: many of the emerg-
ing high-performance and embedded applications, from im-
age/video/audio recognition to automatic translation, busi-
ness analytics, and all forms of robotics rely on machine-
learning techniques. This trend even starts to percolate in
our community where it turns out that about half of the
benchmarks of PARSEC [2], a suite partly introduced to
highlight the emergence of new types of applications, can be
implemented using machine-learning algorithms [4]. This
trend in application comes together with a third and equally
remarkable trend in machine-learning where a small number
of techniques, based on neural networks (especially Convo-
lutional Neural Networks [27] and Deep Neural Networks

PEKING UNIVERSITY

AlNEEL 94z E——DianNao

- WNEHATHRE MG INERRIZT?

- EIRSCHHCSSRHEMLS vs B RHEMEET

R TMZ B T35

- AT EREIIZ?

* WHERIHGTE?
- High associative cache vs {E&{F(i&zS

H
il

B ER REHE

C
C

Q‘\”"if, »
N e 7) ¥

Gios PEKING UNIVERSITY

aoeylaju| Alowan

\ 4

> Control Processor (CP)

Instructions

<5>

AlNNEREEL 94z E——DianNao

for (int nnn = 0; nnn | Nn; nnn += Tnn) { // tiling for output neurons;

for (int iii = 0; iii | Ni; iii += Tii) { / tiling for input neurons;
for (int nn = nnn; nn j nnn + Tnn; nn += Tn) {

for (int n = nn; n | nn + Tn; n++)

sum|[n] = 0;

// — Original code —

for (int n = nn; n < nn + Tn; n++)

for (inti=11;1 < i1 + Ti; 1++)
sum[n] += synapse[n][i] * neuron[i];

for (int n =nn; n < nn + Tn; n++)

neuron[n] = sigmoid(sum[n]);

}r}

PiEERE

B ER REHE

for (int yy = 0; yy j Nyin; yy +=Ty) {
for (int xx = 0; xx j Nxin; xx +=Tx) {
for (int nnn = 0; nnn | Nn; nnn += Tnn) {
// — Original code — (excluding nn, ii loops)

int yout = 0;
for (inty =yy; y < yy + Ty; y +=sy) { /tiling fory;
int xout = 0;

for (int x = xx; x < xx + TX; x +=sx) { //tiling for x;
for (int nn = nnn; nn < nnn + Tnn; nn += Tn) {
for (int n = nn; n < nn + Tn; n++)
sum|[n] = 0;
// sliding window;
for (int ky = 0; ky < Ky; ky++)
for (int kx = 0; kx < Kx; kx++)
for (int ii = 0; ii < Ni; ii += Ti)
for (int n = nn; n < nn + Tn; n++)
for (inti=1ii;1 < ii+ Ti; i++)
// version with shared kernels
sum[n] += synapse[ky][kx][n][i]
* neuron[ky + y][kx + x][i];
// version with private kernels
sum[n] += synapse[yout][xout][ky][kx][n][i] }
* neuron[ky + y][kx + x][1];
for (int n =nn; n < nn + Tn; n++)
neuron[yout][xout][n] = non_linear_transform(sum[n]);
} xout++; } yout++;

Fri}

SR

*ﬂ'

AllMESEE3E 14 4 E——DianNao

<) »
N e 7) ¥

PEKING UNIVERSITY

for (int yy = 0; yy j Nyin; yy +=Ty) {
for (int xx = 0; xx j Nxin; xx +=Tx) {
for (int 111 = 0; 111 j Ni; 111 += Ti1)
// — Original code — (excluding ii loop)
int yout = 0;

o 4Rt E? foz n(:l)l(to?l t==yg;; y <yy+Ty;y+=sy) {
- L ENEIREREGARRBFES for (LR =5 X SXX+ DGR 4=5X) {

- BT EEREERAT,, EDMAIENIGA for (int i = ii; i < ii + Ti; i++)
SEERAHE, RHHinterleavingfdA X, valuefi] = 0;
IS R EFEEESEERS for (intky = 0; ky <Ky; ky++)

for (int kx = 0; kx < Kx; kx++)
for (inti=11;1 < 11 + Ti; i++)
. N . —g // version with average pooling,
. jg*llhﬁvl'ﬁ iﬁﬁﬁ-/Alﬂiﬂ? value[i] += neuron[ky + y][kx + x][i];
// version with max pooling;
value[i] = max(value[i], neuron[ky + y][kx + x][i]);
} Er}
// for average pooling;
neuron[xout][yout][i] = value[i] / (Kx * Ky);
Xout++; } yout++;

b))

H

BIEBEH FEHE <7>

C

ez X F

PEKING UNIVERSITY

AINEZESEY ZB——DianNao

HEFCPURISIMDITH, X7 EEMiTRESRHA
(B2, HERFIECIEL, MPAFE—ENELE, BIEEIZAmEIGRF R

FEFERIEFDRAMAYIE

—

M Acc/ideal M SIMD/Acc.
1000
M nNBin + NBout [l SB M memory | Logic

100 S —
100 7
5
10 2
0

NN NG o““\ 0@"” o‘*"bo““‘& o“““’ ?,oo\:boo\fJ

4]

o

% Total energy

m

P R S AN SRR S SR S, S S
N o\,vf#’ oo““ .:,oVN oo“" c,o"“l oo‘N @0%" g0 5P Gpo\h"

<8>

BIBEH FREHE

A 7 K F

PEKING UNIVERSITY

AllIERE2E 1y 4 E——DaDianNao

—JEX . et

M I C Ro 2 0 1 451:19& DaDianNao: A Machine-Learning Supercomputer

Multi-chip#hERLEZINERS: V=FIJBEITEN BT s o
-

1 SKL of Computer Architecture, ICT, CAS, China
2 Inria, Scalay, France
3 University of CAS, China
4 Inner Mongolia University, China

\Y

H
i

VBB FREHE

¢

Abstract—Many companies are deploying services, either
for consumers or |nrluslry, which are largely bﬂscd on

Remarkably enough, at the same time this profound
shift in appllcauons is occumng, two simultaneous, albeit

of
large amounts of data The state-nf the-art and most popular
such hi are C lutional and Deep

Neural Networks (CNNs and DNNs), which are known to be
both computationally and memory intensive. A number of
neural network accelerators have been recently proposed which
can offer high computational capacity/area ratio, but which
remain hampered by memory accesses.

However, unlike the memory wall faced by processors on
general-purpose workloads, the CNNs and DNNs memory
footprint, while large, is not beyond the capability of the on-
chip storage of a multi-chip system. This property, combined
with the CNN/DNN algorithmic characteristics, can lead to high
internal bandwidth and low external communications, which
can in turn enable high-degree parallelism at a reasonable
area cost. In this article, we introduce a custom multi-chip
machine-learning architecture along those lines. We show that,
on a subset of the largest known neural network layers, it
is possible to achieve a speedup of 450.65x over a GPU, and
reduce the energy by 150.31x on average for a 64-chip system.
‘We implement the node down to the place and route at 28nm,
containing a combination of custom storage and computational
units, with industry-grade interconnects.

1. INTRODUCTION

Machine-Learning algorithms have become ubiquitous in
a very broad range of applications and cloud services;
examples include speech recognition, e.g., Siri or Google
Now, click-through prediction for placing ads [27], face
identification in Apple iPhoto or Google Picasa, robotics
[20], pharmaceutical research [9] and so on. It is probab]y
not exaggerated to say that hine-learning appli are
in the process of displacing scientific computing as the major
driver for high-performance computing. Early symptoms
of this transformation are Intel calling for a refocus on
Recognition, Mining and Synthesis applications in 2005
[14] (which later led to the PARSEC benchmark suite
[3]), with Recognition and Mining largely corresponding
to machine-learning tasks, or IBM developing the Watson
supercomputer, illustrated with the Jeopardy game in 2011

[19].

pp ly d, transformati are occurring in the
machine-learning and in the hardware domains. Our com-
munity is well aware of the trend towards heterogeneous
puting where archi specialization is seen as a
promising path to achieve high performance at low energy
[21], provided we can find ways to reconcile architecture
specialization and flexibility. At the same time, the machine-
learning domain has profoundly evolved since 2006, where a
category of algorithms, called Deep Learning (Convolutional
and Deep Neural Networks), has emerged as state-of-the-art
across a broad range of applications [33], [28], [32], [34]. In
other words, at the time where architects need to find a good
tradeoff between flexibility and efficiency, it turns out that
just one category of algorithms can be used to implement a
broad range of applications. In other words, there is a fairly
unique opportunity to design highly specialized, and thus
highly efficient, hardware which will benefit many of these
emerging high-performance applications.

A few research groups have started to take advantage of
this special context to design accelerators meant to be inte-
grated into heterogeneous multi-cores. Temam [47] proposed
a neural network accelerator for multi-layer perceptrons,
though it is not a deep learning neural network, Esmaeilzade-
h et al._[16] propose to use a hardware neural network
called NPU for approximating any program function, though
not ifically for hine-learning applications, Chen et
al. J_i] proposed an accelerator for Deep Learning (CNNs
and DNNs). However, all these accelerators have significant
neural network size limitations: either small neural networks
of a few tens of neurons can be executed, or the neurons
and synapses (i.e., weights of connections between neurons)
intermediate values have to be stored in main memory. These
two limitations are severe, respectively from a machine-
learning or a hardware perspective.

From a machine-learning perspective, there is a significant
trend towards increasingly large neural networks. The recent
work of Krizhevsky et al_[32] achieved state-of-the-art
accuracy on the ImageNet database [13] with “only” 60

[

G UL »
NIELE TR

PEKING UNIVERSITY

AlMEESZ2E18 & E——DaDianNao

- DaDianNaofh&itHis=:
- PR (tile) 1Zit, IREMNEFESEEITREET, KA4-bank e DRAMEITTF(E
- REBFMREAILT, HITEAREAEERE
- ©hRAEIZE24eDRAM bank, #HiTHAFlmHEEENFRE
» EEFXIMLPHICNNIZT, BRISZIAHISGFNHETE

Data
to SB
Parameters Settings | Parameters Settings
Frequency 606MHz | tile eDRAM latency ~3 cycles
of tiles 16 | central eDRAM size 4MB
of 16-bit multipliers/tile 256432 | central eDRAM latency ~ 10 cycles
of 16-bit adders/tile 256+32 | Link bandwidth 6.4x4GB/s NFU ﬁ
tile eDRAM size/tile 2MB | Link latency 80ns .16 6
input output
neurons neurons
Table III: Architecture characteristics.

EE'*E@EE %gﬁ:@ <10 >

AlNNiE=S

L

2016£E, MITEIPAMBZETEHPCA.
EyerissEXIF A REUERHTT3

E——Eyeriss

CE PR

PEKING UNIVERSITY

ISSCC. JSSCEFEiEXEyeriss, WFHFARZETEER N

BBV EM L, IR T#iflrow stationary&l

yeriss: A Spatial Architecture for Energ

-Efficient Dataflow

for Convolutional Neural Networks

Yu-Hsin Chen*, Joel Emer*’ and Vivienne Sze*

*EECS, MIT
Cambridge, MA 02139

*NVIDIA Research, NVIDIA
Westford, MA 01886

*{yhchen, jsemer, sze}@mit.edu

Abstract—Deep convolutional neural networks (CNNs) are
widely used in modern Al systems for their superior accuracy
but at the cost of high computational complexity. The complex-
ity comes from the need to simultancously process hundreds

The large size of such networks poses both throughput
and energy efficiency challenges to the underlying processing
hardware Convolutions account for over 90% of the CNN

and i runtime [10]. Although these

of filters and channels in the high.

which involve a significant amount of data Although
highly-parallel compute paradigms, such as SIMD/SIMT, effec-
tively address the computation requirement to achieve high
throughput, energy consumption still remains high as data
movement can be more expensive than computation. Accord-
ingly, finding a dataflow that supports parallel processing with
minimal data movement cost is crucial to achieving energy-
efficient CNN processing without compromising accuracy.
In this paper, we present a novel dataflow, called row-
ry (RS), that data energy con-
sumption on a spatial architecture. This is realized by ex-
ploiting local data reuse of filter weights and feature map
pixels, i. high
and minimizing data movement of partial sum accumulations.
Unlike dataflows used in existing designs, which only reduce
certain types of data movement, the proposed RS dataflow
can adapt to different CNN shape configurations and reduces
all types of data movement through maximally utilizing the
processing engine (PE) local storage, direct inter-PE communi-
cation and spatial parallelism. To evaluate the energy efficiency
of the different dataflows, we propose an analysis framework

can leverage highly-parallel compute di
such as SIMD/SIMT, may not scale
due to the ing band i and the
energy consumption remains high as data movement can be
more expensive than computation [11-13]. In order to achleve

ient CNN ing without

throughput, we need to develop dataflows that support parallel
processing with minimal data movement. The differences
in data movement energy cost based on where the data is
stored also needs to be accounted for. For instance, fetching
data from off-chip DRAMs costs orders of magnitude more
energy than from on-chip storage [11.12].

Many previous papers have proposed specmhzed CNN

on various GPU [14],
FPGA [15-21], and ASIC LZZ_Zﬁ] However, due to dif-
ferences in technology, hardware resources and system
setup, a direct comparison between different implementations
does not provide much insight into the relative energy

that compares energy cost under the same area
and i i i i using the
CNN configurations of AlexNet show that the proposed RS
dataflow is more energy efficient than existing dataflows in
both convolutional (14X to 2.5x) and fully-connected layers
(at least 1.3x for batch size larger than 16). The RS dataflow
has also been demonstrated on a fabricated chip, which verifies
our energy analysis.

L. INTRODUCTION

The recent popularity of deep learning [1], specifically
deep convolutional neural networks (CNNs), can be attributed
to its ability to achieve unprecedented accuracy for tasks
ranging from objec‘ recognition [2-5] and detection [6, 7]
to scene und: [8]. These state-of-the-art CNNs [2—
5] are orders of magnitude larger than those used in the
1990s [9], requiring up to hundreds of megabytes for filter
weight storage and 30k-600k operations per input pixel.

of different . In this paper, we evaluate
the energy efficiency of various CNN dataflows on a spatial
architecture under Ihe same hardware resource constraints,
ie., area, and technols Based
on this evaluation, we will propose a novel dataflow that
maximizes energy efficiency for CNN acceleration.
To evaluate energy consumption, we categorize the data
in a spatial archi into several levels of
hierarchy according to their energy cost, and then analyze
each dataflow to assess the data movement at each level.
This analysis framework provides insights into how each
dataflow exploits different types of data movement using
various architecture resources. It also offers a quantifiable
way to examine the differences in energy efficiency between
different dataflows.
Previously proposed dataflows typically optimize a certain
type of data movement, such as input data reuse or partial

ISSCC 2016 / SESSION 14 / NEXT-GENERATION PROCESSING / 14.5

i, FrmAISiE

14.5 Eyeriss: An Energy-Efficient Reconfigurable
for Deep i Neural

Networks
Yu-Hsin Chen', Tushar Krishna', Joel Emer'?, Vivienne Sze'

'Massachusetts Institute of Technology, Cambridge, MA,
*Nvidia, Westford, MA

Deep learning using convolutional neural networks (CNN) gives state-of-the-art
accuracy on many computer vision tasks (e.0. object detection, recognition,
segmentation). Convolutions account for over 90% of the processing in CNNs
for both inferenceftesting and training, and fully convolutional networks are
increasingly being used. To achieve state-of-the-art accuracy requires CNNs with
not only a larger number of layers, but also millions offitters weights, and varying
shapes (ie. filter sizes, number of filters, number of channels) as shown in.Eig.
1451, Forinstance, AlexNet [1] uses 2.3 millon weights (4.6MB of storage) and
requires 666 million MACs per 227x227 image (13kMACs/pixel). VG616 (2] uses
14.7 million weights (29.4MB of storage) and requires 15.3 billion MACs per
224x224 image (306KMACs/pixel). The large number of filter weights and
channels results in substantial data movement, which consumes significant
energy.

Existing accelerators do not support the configurability necessary to efficiently
support large CNNs with different shapes {3], and using mobile GPUs can be
expensive [4]. This paper describes an accelerator that can deliver state-of-the-
artaccuracy with minimum energy consumption in the system (including DRAM)
in real-time, by using two key methods: (1) efficient dataflow and supporting
hardware (spatial array, memory hierarchy and on-chip network) that minimize
data movement by exploiting data reuse and support different shapes; (2) exploit
data statistics to minimize energy mmugn 2eros skipping/gating to avoid

y reads and to reduce off-chip
memory bandwidth, which is the most exaenswe data movement

shows the top-level architecture and memory hierarchy of the
accelerator. Data movement is optimized by buffering input image data (Img),
filter weights (Filt) and partial sums (Psum) in a shared 108KB SRAM buffer,
which facilitates temporal reuse of loaded data. Image data and filter weights are
read from DRAM o the buffer and streamed into the spatial computation array
allowing for overlap of memory traffic and computation. The streaming and reuse
allows the system to achieve high computational efficiency even when running
the memory link at a lower clock frequency than the spatial array. The spatial array
computes inner products between the image and filter weights, generating partial
Sums that are returned from the aray o th buffer and then, optonalyrecified
(ReLU) and compressed, to the DRAM. Run-| reduces

supported. Furthermore, the same data value is often needed by multiple PEs,
whose physical location in the array depends on the data type (fiter, image or
partial sum) and layer.

Since different layers have different shapes and hence different mappings, a
design-time fixed interconnect topology will not work. Every PE can potentially
be a destination for a piece of data in some particular configuration, and 0
Network-on-Chip (NoC) is needed to support address based data delivery.
However, traditional NoC designs with switches at every PE to buffer/forward data
to one or multipe targets would result in multi-cycle delays. A full-chip broadcast
to every PE could work, but would consume enormous power.

To optimize data movement, tis important to exploit spatial reuse, where a single
butter read can be used by multiple PEs (i.e. multicast). Eig 1454 shows our
NoC that supports configurable data patterns, and provides an energy-efficient
multicast to a variable number of PES within a single-cycle. The NoC comprises
one Global Y bus, and 12 Global X buses (one per row). Each PE is configured
with a (row, col) ID at the beginning of processing via a scan chain. Multicast to
any subset of PEs is achieved by assigning the same ID to multiple PEs. Data
from the buffer is tagged with the target PES' (row, col) ID, and multicast
controlers at the input of each X bus and each PE deliver data only to those X
buses and PEs, respectively, that match the target ID to avoid unnecessary
switching. Datais sent on the buses only if a target PEs are ready (i.e., have an
empty buffer) to receive. To support high bandwidth, we use separate input NoCs
for flter, image, and partial sums. The partial sum NoC has a separate set of
output links to the buffer to write the final partial sums. The NoC data delivery for
four of the cases from Fig. 14.5.3 is shown in

Each processing engine, shown in £ig. 145 5, is a three-stage pipeline responsible
for calculating the inner product of the input image and filter weights for a single
row of the filter. The sequence of partial sums for the sliding filter window is
computed sequentially. The partial sums for the row are passed on a local link to
the neighboring PE (see , where the cross-row partial sums are
computed. Local scratch pads allow for energy-efficient temporal reuse of input
image and filter weights by recirculating values needed by different windows. A
partial sum scratch pad allows for temporal reuse of partial sums being generated
for different images and/or channels and filters. Data gating is achieved by
recording the input image values of zero in a ‘zero buffer' and skipping flter reads
and computation for those values resulting in a 45% power savings in the PE.

The test chip is implemented in 65nm CMOS. It operates at 200MHz core clock
and 60MHz link clock, which results in a frame rate of 34.7fps on the five
convolutional layers in AlexNet and a measured power of 278mW at 1V. The PE
array, NoC and on-chip buffer consume 77.8%, 15.6% and 2.7% of the total
povier,respeciely. Thecoeand nkclocks can scal up o 250MHz and SNz,

the average image bandwidth by 2x. Configurable support for image and fter
sizes that do not fit completely into the spatial aray is achieved by saving partial
sums in the buffer and later restoring them to the spatial array. The sizes of the
spatial array and buffer determine the number of such ‘passes' needed to do the
calculations for a specific layer. Unused PEs are clock gated

Figure 14.5.3 shows the dataflow within the array for filter weights, image values
and partial sums. If the filter height (R) equals the number of rows in the array
(in our case 12), the logical dataflow would be as follows: (1) filter weights are
fed from the buffer into the left column of the array (one filter row per PE) and
the filter weights move from left to right within the array; (2) image values are fed
into the left column and bottom row of the array (one image row per PE) and the
image values move up diagonally; (3) partial sums for each output row move up
vertically, and can be read out of the top row at the end of the computational pass.
If the partial sums are used in the next pass, they are fed into the bottom row of
the array from the buffer at the beginning of the next computational pass.

In order to maximize utilization of a fixed-size array for different shapes, the
mapping may require either folding or replication if the shape size is larger or
smaller than the array dimension, respectively. Replication results in increased
throughput as compared to the purely logical dataflow described above. Gases I,
11l 1V, and V in Fig. 14.5.3 illustrate the replication and folding of image values
for various layers of AlexNet. The same data values are shown in the same color.
Across the six example cases, which include physical mapping of filter weights,
image values and partial sums onto the fixed-size spatial array, we see the logical
dataflow patterns translating to myriad physical dataflow patterns that need to be

pectively. This enables us to achieve a throughput of 44.8fps at 1.17V. Eig.
1255 shows the at each layer, includi ratio, power
consumption, PE utiization, and memory access to highlight the reduction in
DRAM bandwidth, efficiency of the reconfigurable mapping and reduced data
oot o dtaruse repectaly. A i phol of the i ad the range of
the shapes it can support natively are shown in

Acknowledgements:

This work is funded by the DARPA YFA grant N66001-14-1-4039, MIT Center for
Integrated Circuits & Systems, and a gift from ntel. The authors would also like
to thank Mehul Tikekar and Michael Price for their technical assistance.

References:
[1) A Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks," Neural Information Processing Systems, pp.
1097-1105, 2012.

[2] K. Simonyan, A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” CoRR, abs/1409.1556, 2014

[3]'S. Park et al., “A 1.93TOPSMW Scalable Deep Learning/Inference Processor
with Tetra-parallel MIMD Architecture for Big Data Applications,” ISSCC Dig. Tech.
Papers, pp. 80-81, 2015

[4]'S. Chetlur et al, “cuDNN: Efficient Primitives for Deep Learning,” CORR,
abs/1410.0759, 2014.

262 = 2016 IEEE International Solid-State Circuits Conference

978-1-4673-9467-3/16/$31.00 ©2016 IEEE

IEEE JOURNAL OF SOLID-STATE CIRCUITS

1L C final as presented, with the

Eyeriss: An Energy-Efficient Reconfigurable
Accelerator for Deep Convolutional
Neural Networks

Yu-Hsin Chen, Student Member, IEEE, Tushar Krishna, Member, IEEE,
Joel S. Emer, Fellow, IEEE, and Vivienne Sze, Senior Member, IEEE

Abstract— Eyeriss is an f-the-art deep
convolutional neural networks (CNNs). n opllmlus for the energy
efficiency of the entire system, including the accelerator chip
and off-chip DRAM, for various CNN shapes by reconfiguring
the architecture. CNNs are widely used in modern Al systems
but also bring challenges on throughput and energy efficiency
to the underlying hardware. This is because its computation
requires a large amount of data, creating significant data
movement from on-chip and off-chip that is more energy-
data movement energy
cost for any CNN shape, therefore, is the key to high throughput
and energy efficiency. Eyeriss achieves these goals by using a
proposed processing dataflow, called row stationary (RS), on a
spatial architecture with 168 processing elements. RS dataflow
reconfigures the computation mapping of a given shape, which
optimizes energy efficiency by maximally reusing data locally
to reduce expensive data movement, such as DRAM accesses.
Compression and data gating are also applied to further improve
energy efficiency. Eyeriss processes the convolutional layers
at 35 frames/s and 0.0029 DRAM access/multiply and accumula-
tion (MAC) for AlexNet at 278 mW (batch size N = 4), and
0.7 frames/s and 0.0035 DRAM accesssMAC for VGG-16
at 236 mW (N =3).

Index Terms—Cnnwlulmml neural networks (CNNs),

deey gy-eMcient

dataflow cep learning,
spatial architecture.

L. INTRODUCTION

P learning using convolutional neural networks

(CNNs) [1] has achieved unprecedented accuracy on
many modern Al applications [2]-[9]. However, state-of-the-
art CNNs require tens to hundreds of megabytes of para-
meters on billions of operations in a single inference pass,
creating significant data movement from on-chip and off-
chip to support the computation. Since data movement can
be more energy-consuming than computation [10], [11], the

Manuscript_received May 5, 2016; revised July 31, 2016; accepted
September 28, 2016 This paper was approved by Associate Editor
Dejan Markovic.

Y-H. Chen and V. Sze are with the Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA.

T. Krishna was with the Department of Electrical Engincering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
He is now with the School of Electrical and Computer Engincering, Georgia
Insitute of Technology, Adanta, GA 30332 USA.

J.S. Emer is with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA,
and also with Nvidia Corporation, Westford, MA 01886 USA.

Color versions of one or more of the figures in this paper arc available
online at htp:/fiecexplore.icee.org.

Digital Object Identifier 10.1109/JSSC.2016.2616357

of CNNs has to not only provide high parallelism
for high throughput but also optimize for the data movement of
the entire system in order to achieve high energy efficiency.
In addition, this optimization needs to adapt to the varying
shapes of the high-dimensional convolutions in CNN.

To address these challenges, it is crucial to design a compute
scheme, called a dataflow, that can support a highly parallel
compute paradigm while optimizing the energy cost of data
movement from both on-chip and off-chip. The cost of data
movement is reduced by exploiting data reuse in a multilevel
memory hicrarchy, and the hardware needs to be reconfig-
urable to support different shapes. To further improve energy
efficiency, data statistics can also be exploited. Specifically,
CNN data contains many zeros. Techniques such as compres-
sion and data adaptive processing can be applied to save both
memory bandwidth and processing power.

Previous work has proposed hardware designs for CNN
acceleration [12]-[22], However, most of them only have
simulation results that are not verified by the measured results
from fabricated chips; implementations using FPGA also do
not reveal the actual throughput and energy efficiency of the
architecture. A few efforts have demonstrated the measurement
results of fabricated chips . However, these works
do not benchmark their implementations using widely used
publicly available state-of-the-art CNNs, which is critical to
the hardware evaluation. Specifically, Park et al. [23] propose
a deep-learning processor for running both training and infer-
ence using an MIMD architecture, which was tested on a cus-
tom four-layer network using 5 x 5 filters. Cavigelli ef al. [24]
present a CNN accelerator for inference that is tested on a four-
layer CNN using 7 x 7 filters. Sim er al. [25] demonstrate a
CNN processor and only report the theoretical peak throughput
along with the power measured on a CNN for the MNIST
data set [26], which has storage and computation requirements
that are orders of magnitude lower than the state-of-the-art
CNNs. With the exception of [24], these works did not report
the required DRAM bandwidth for the proposed compute
schemes. It is not sufficient to look at the processor power
alone, since DRAM access is one of the most important factors
dictating the system energy efficiency.

In this paper, we have implemented and fabricated a CNN
accelerator, called Eyeriss, that can support high through-
put CNN inference and optimizes for the energy efficiency
of the entire system, including the accelerator chip and
off-chip DRAM. It is also reconfigurable to handle different

0018-9200 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

ee hitp://ww)

tml for more information.

NPT

508 PEKING UNIVERSITY

AlNMiEzESR 9 E—Eyeriss

- SRTERRNAIRESE AR
- BONENNEENSH, JURERFELESEKR, RATESRE

SHRE SRENSEEE SRENZEER
Input Fmaps
Filters ;
Filter In?ut Fmap ;_I;nf)ut Fmap Filter
>)
= i L~ <:\ -
= S 1
2" |-
ahnEfNEENER b i=ligp=]z: NEENSH

BEBEH REHE <12>

AlNhE=RZR I E—Eyeriss

- EyerissiBIMB LR RILESED B33!
- NERS, KRTIEGIRTPUE, EEZiER, NEEFEHMAEEEPER, RAKINEER

Global Buffer

BEBEH REHE <13>

AlNhE=RZR I E—Eyeriss
- EyerissiBIBEIERINE:S 2 /33%:

- NERS, NFRIIEE:
- IS, NFRIIEE:

NFU: ¢

PEo.0

PE1.0

EBETPUSE, IEEHMCFEHEEPER,
EShiDianNao%, WmH{EEEEPEREEENM,

Cycle:
#0, #1 4 #2 \ #3 ,#4

PEo 1

PE; 1]

X1oX20'X3o'X11

BEBEH REHE

ShiDianNao

X, o-X1 0 'Xz 0 -Xo . B

Input feature map

EAINESH

:éz]txJ’ >

508 PEKING UNIVERSITY

/AMEI L RYES T

<14 >

AINNERSSRIYA%ZE—Eyeriss
+ EyerissiEIMBEUERINESS T H3%:

- PERS, AERITIESIETPUE, NEERMSIFEEPER,

EAINESH

NEF 2R

Gios PEKING UNIVERSITY

- BES, ARIIFEEShiDianNaos, WHLEFEHEEPERERM, &IVEIMEAESHH

* No local reuse, (XEFIL{EEEDianNao,. DaDianNao%s
« Same total area 256 PEs
« AlexNet Configuration® <« Batch size = 16
2 Variants of OS
{))
1.5
Normalized 1
Energy/MAC
0.5
0
WS 0S, ©O0S; O0S. NLR Row
FEEH FEHE * AlexNet CONV layers CNN Dataflows Stationary

<15 >

AlNhE=RZR I E—Eyeriss

- EFEURERIE, Eyerissighi T row stationaryf9&iiEiR
- iHEETTAER, NE., mAHEEEEREDESER

<) »
N e 7) ¥

PEKING UNIVERSITY

Input Image Input Image Fi Input Image Bartial S
Filter Partial Sums Filter Partial Sums ifter artial sums
HH . I 2 b c I b * I 2 b o HH . _ B
PE Reg File PE Reg File PE
W;l\ il 1[0

BEBEH REHE <16 >

AINIMEZRERE L

- ARITERTIE, i

E——Eyeriss
- EFEURERIE, Eyerissighi T row stationaryf9&iiEiR
- iHEETTAER, NE., mAHEEEEREDESER
—SSRNE. AT
Row 1 'Row 2 Row 3
T PE 1 T PE 4 T PE7
Row1. Row1 |NM/Row1_ Row2 |N[Row1_ Row3 |
I PE 2 I PE 5 I PE 8
Rowi2 |/ Row:20 | il |[Rowi2 [" Row:31 | Il Rowi2 & i Row 40|
I PE 3 I PE 6 I PE9
Rowi3 L/ Row 30 | il ([Rowi3 L " Row 4. | Il (IRowi3 L Row 501 |

B ER REHE

.*5:@ .*E:E .*ﬁ:ﬁ

N e 7.5 ¥

5ot PEKING UNIVERSITY

<17 >

AlNhE=RZR I E—Eyeriss

- BEF RN, Eyerissizh Trow stationaryRIENHE R
- iR E8TAEE, WE‘ WA EEEIDESH
« AETEETTIE, SEBNE. mATMEE
- H—THEE U%E‘)\lﬁe

s PEKING UNIVERSITY

Filter 1 Image 1 Psum 1

Channel 1 | [+ IR =

Filter 1 Image 2 Psum 2

Channe 1 | IR« TR =

share the same filter row

Processing in PE: concatenate image rows

Filter 1 Image 1 & 2 Psum 1 & 2

Channel 1 m* Row 1 Row 1 8 Row 1 Row 1

BEBHR F#EaHE <18 >

s PEKING UNIVERSITY

AlNhE=RZR I E—Eyeriss

- BEF RN, Eyerissizh Trow stationaryRIENHE R
- iR E8TAEE, WE‘ WA EEEIDESH
« AETEETTIE, SEBNE. mATMEE
- H—THEE U%E‘)\lﬁe SE1%

Filter 1 Image 1 Psum 1

=l Channel 1 [N + I = [0

l

— R —

«—X

Tc';" ‘ Filter 2 Image 1 Psum 2
= Channel 1 [GEUEN * 0N = IEEEN

— R —
share the same image row

Processing in PE: interleave filter rows

Filter1 & 2 Image 1 Psum 1 & 2

Channel 1 [T + [EETRT - [T

BEBHR F#EaHE <19>

AlNhE=RZR I E—Eyeriss

- BEF RN, Eyerissizh Trow stationaryRIENHE R
- iR E8TAEE, WE‘ WA EEEIDESH
« AETEETTIE, SEBNE. mATMEE
- i ?EEEU%E‘AI& ZER%, AEBNEE

Filter 1 Image 1 Psum 1

Channel 1 (IR0 + [N =

PEKING UNIVERSITY

Filter 1 Image 1 Psum 1

T Channel 2 [N+ IETEN = [ETE0

accumulate psums

Processing in PE: interleave channels

Filter 1 Image 1 Psum

Channei 1 & 2 (TN + IS - 720

BEBHR F#EaHE <20 >

AlNhE=RZR I E—Eyeriss

- EyerissfITFHERFA

. ST AREEANEETEE, A

i

3=

- RATH—EZEEFMER, SR, TERTHESRE
 HIA T ERTIREEREIRIR, GEsFIAEA RIS LERPAIOTE

NIELE T

Link Clock! Core Clock DCNN Accelerator Technology TSMC 65nm LP 1P9M
=) Core Area 3.5mmx3.5mm
: 14%x12 PE Array Gate Count 1852 kGates (NAND2)
: Filter i On-Chip Buffer 108 KB
II # of PEs 168
! Scratch Pad / PE 0.5 KB
. Input Image s Supply Voltage 0.82-1.17V
Il Decomp Core Frequency 100 - 250 MHz
: Peak 33.6 — 84.0 GOPS
. Output Image Performance (2 OP =1 MAC)
1L, Comp RelLU Word Bit-width 16-bit Fixed-Point
| e, 1- 32 [width]
i Filter Size 1-12 [height]
' # of Filters* 1-1024
of Channels* 1-1024
Off-Chip DRAM o R 1-12 [horizontal]
bl 64 bits g 1,2, 4 [verticall

PEKING UNIVERSITY

<21 >

AlNMERSMEA&ZRE—Eyeriss 5 e i F

3 PEKING UNIVERSITY

- EidigEyerissHITIIE S HithERmE# 1T T LA IR
- RFIYTIEEEERA (BMUS/PERNEEEEIRA)
- BufferfIhiER]s, EAH—FTIEATEA. NENELERINSH

—
1.5 m ALU
RF B psums
Normalized . 2 NoC Normalized - iaht
Energy/MAC ° Energy/MAC welghts
W buffer B pixels
0.5 » DRAM
0
WS

S, OS; OS. NLR S, OS; OS. NLR
CNN Dataflows CNN Dataflows

EQEE %ﬁ#@ <22>

AINNE

g2z & FE——Google TPU v1

Google TPUIEXA&FFISCA 2016, M2015FF
t5, TPUBEERTE T GooglefRs3=EH

B Bt RILEHEIRNNE,

BEKEMLP, CNN,

LSTM =4 4g
FBEXFNV K80 GPU#FIntel Haswell CPU, 15-30

(ZIERFEE. 30-80f=

HESSIPEAE

e 7

PEKING UNIVERSITY

Name

Layers Nonlinear Weichts TPU Ops / |\TPU Batch| % of Deployed
FC | Conv |Vector| Pool |Total | function & Weight Byte Size |TPUs in July 2016

MLPO

5 ReLU 20M 200 200

MLP1

61%

4 ReLU SM 168 168

LSTMO

34

58 |sigmoid, tanh | 52M 64 64

LSTM1

19

29%

56 | sigmoid, tanh | 34M 96 96

CNNO

16 ReLU &M 2888 8

CNNI1

13

5%

89 ReLU 100M 1750 32

N

In-Datacenter Performance Analysis of a Tensor Processing Unit™

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,
Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell,
Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek
Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma,
Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon
Google, Inc., Mountain View, CA USA
Email: {jouppi, cliffy, nishantpatil, davidpatterson} @google.com
To appear at the 44th International S;

pposium on Computer Architecture (ISCA), Toronto, Canada, June 26, 2017.

Abstract

Many architects believe that major improvements in cost-energy-performance must now come from domain-specific
hardware. This paper evaluates a custom ASIC—called a Tensor Processing Unit (TPU)— deployed in datacenters
since 2015 that accelerates the inference phase of neural networks (NN). The heart of the TPU is a 65,536 8-bit MAC
matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS) and a large (28 MiB)
software-managed on-chip memory. The TPU’s deterministic execution model is a better match to the 99th-percentile
response-time requirement of our NN applications than are the time-varying optimizations of CPUs and GPUs
(caches, out-of-order execution, multithreading, multiprocessing, prefetching, ...) that help average throughput more
than guaranteed latency. The lack of such features helps explain why, despite having myriad MACs and a big
memory, the TPU is relatively small and low power. We compare the TPU to a server-class Intel Haswell CPU and an
Nvidia K80 GPU, which are contemporaries deployed in the same datacenters. Our workload, written in the high-level
TensorFlow framework, uses production NN applications (MLPs, CNNs, and LSTMs) that represent 95% of our
datacenters’ NN inference demand. Despite low utilization for some applications, the TPU is on average about 15X -
30X faster than its contemporary GPU or CPU, with TOPS/Watt about 30X - 80X higher. Moreover, using the GPU’s
GDDRS memory in the TPU would triple achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X the
CPU.

Index terms—-DNN, MLP, CNN, RNN, LSTM, neural network, domain-specific architecture, accelerator

1. Introduction to Neural Networks
The synergy between the large data sets in the cloud and the numerous computers that power it has enabled a renaissance in
machine learning. In particular, deep neural networks (DNNs) have led to breakthroughs such as reducing word error rates in
speech recognition by 30% over traditional approaches, which was the biggest gain in 20 years [Deal6]; cutting the error rate
in an image recognition competition since 2011 from 26% to 3.5% [Kril2] [Szel5] [Hel6]; and beating a human champion at
Go [Sil16]. Unlike some hardware targets, DNNs are applicable to a wide range of problems, so we can reuse a DNN-specific
ASIC for solutions in speech, vision, language, translation, search ranking, and many more.

Neural networks (NN) target brain-like functionality and are based on a simple artificial neuron: a nonlinear function
(suchasmax (0, value)) of a weighted sum of the inputs. These artificial neurons are collected into layers, with the
outputs of one layer becoming the inputs of the next one in the sequence. The “deep” part of DNN comes from going beyond
a few layers, as the large data sets in the cloud allowed more accurate models to be built by using extra and larger layers to
capture higher levels of patterns or concepts, and GPUs provided enough computing to develop them.

The two phases of NN are called training (or learning) and inference (or prediction), and they refer to development
versus production. The developer chooses the number of layers and the type of NN, and training determines the weights.
Virtually all training today is in floating point, which is one reason GPUs have been so popular. A step called quantization
transforms floating-point numbers into narrow integers—often just 8 bits—which are usually good enough for inference.
Eight-bit integer multiplies can be 6X less energy and 6X less area than IEEE 754 16-bit floating-point multiplies, and the

NEF T

508 PEKING UNIVERSITY

AlNNiEZEEE A% R——Google TPU

- TPUIGITSH
- FEPESEIAERTT: 256 x 256, ZIFIRAEIENSRA (A3ZISERITHE) , double buffering,
BAHI~HE2561 partial sum, 3ZIF8LLIFINE, 8/16LL4FHIA
- ZNNErT: 4 MBEE (4096 x 256 x 32b) , double buffering
- F E=FiE: MMUE#E64KBIE, FIFOiRE B4, Hii=FiEH24MB

— @ ' DDR3 DRAM Chips | |

) {y oGBS
14 GiB/s DDR3.2133 30 GiB/s Weight FIFO
: : Interfaces [::> (Weight Fetcher)
e 2 30 GiBls
Control | Control @
: |
© —
; 8 Matrix Multiply i
$ Unit
14 GiBls <§ E 14 GiBIs g L i l
— |85 £ ! —>
: |
[~}
: -

Partial Sums

!
_ !
’

Y

Y
Y

— Done

<24 >

AINIMEZRERE L

- ETPURYKRE,

E——Google TPU

£

[[=]

i

;)t 7

PEKING UNIVERSITY

BIRERGLLA67%, 1/OmRAGLL10%, =HlhEk2%
- RACISCIES, ERSANEZIFSE:!

« Read Host Memory, Read Weights, MatrixMultiply/Convolve, Activate, Write Host Memory

Local Unified Buffer for

Matrix Multiply Unit

Activations (256x256x8b=64K MAC)
(96Kx256x8b = 24 MiB) 24%
29% of chip
D Host Accumulators g
4 Interf. 2% (4Kx256x32b =4MiB)6% |
M r _ A M
port - Activatlon Pipeline 6% port
ddr3 ddr3
2% |, PCle . 3%
57 Interface 3% | % ;- | Misc. /O 1%

B ER REHE

<25>

*ﬂ

AINNE

o3& B——Google TPU

+ HEFRooflinetRBPRFRRITIT(L
« TPU Roofline:
- FByteRINEIZANEZE13 505N,
AREER R ALK AILFHRIR
- IGFHRERAYER{E: LSTM, MLP
- 1T EHRERRIERIE: &R

BIEBEH FEHE

u‘”ulr »
NIECE R

Gios PEKING UNIVERSITY

TPU Log-Log
86.0
= Roofline
x LSTMO
50
LSTM1
A MLP1
12.3 141
9.7 @ ¢ MLPO
10 ® CNNO
—_
§ 5 3.7 #® CNN1
g
3
]
% :
[
0.5
0.1
1 10 100 1000

Operational Intensity: MAC Ops/weight byte (log scale)

<26 >

AlNNiEZEEEa & B——Google TPU

PIFEE

PEKING UNIVERSITY

Layers Nonlinear . TPU Ops /
¢ Goog Ie TPU V1 Hg'l.iﬁgﬁ*ﬁ Name FC | Conv V}ejctor Pool |Total| function Weights Weight lp;yte
MLPO 5 5 ReLU 20M 200
el s MLPI1 4 4 ReLU M 168
° 'i"l'i‘jM LPs LSTM ' Eﬂﬂiﬂ%ﬂﬁkﬁﬁﬁ Igﬁﬁéﬁ LSTMO | 24 34 58 | sigmoid, tanh | 52M 64
LSTM1 | 37 19 56 [sigmoid, tanh [34M 96
* — h S
+ EFEENSEERNZAFEREEIE et |37 |1 [| RelU oo 1750
Application MLPO MLPI | LSTMO LSTMI | CNNO CNNI | Mean | Row
Array active cycles 127% 10.6% 8.2% 10.5%| 782% 462%| 28% 1
Useful MACs in 64K matrix (% peak) 12.5% 9.4% 8.2% 63%| 782% 22.5%| 23% 2
Unused MACs 0.3% 1.2% 0.0% 42%| 00% 23.7% 5% 3
Weight stall cycles 539% 442% 58.1% 62.1%| 00% 28.1%| 43% 4
Weight shift cycles 159% 13.4% 15.8% 171%| 00% 70%| 12%| 5
Non-matrix cycles 17.5% 31.9% 17.9% 103%| 21.8% 18.7%| 20% ©6
RAW stalls 3.3% 8.4% 14.6% 10.6%| 35% 228%| 11% 7
Input data stalls 6.1% 8.8% 51% 24%| 34% 0.6% 4% 8
TeraOps/sec (92 Peak) 12.3 9.7 3.7 2.8 86.0 141 214 9
Table 3. Factors limiting TPU performance of the NN workload based on hardware performance counters. Rows 1,4, S, and 6 total
100% and are based on measurements of activity of the matrix unit. Rows 2 and 3 further break down the fraction of 64K weights
in the matrix unit that hold useful weights on active cycles. Our counters cannot exactly explain the time when the matrix unit is
idle in row 6; rows 7 and 8 show counters for two possible reasons, including RAW pipeline hazards and PCle input stalls. Row 9
(TOPS) is based on measurements of production code while the other rows are based on performance-counter measurements, so
they are not perfectly consistent. Host server overhead is excluded here. CNN1 results are explained in the text.
<27 >

~

BEER REHE

*ﬂ'

AlNhE=RZR I ZE——Google TPU v2

- AEFTPU vIRZIHEE, TPU v2EERAZIH)IS
- HRTFIHE, FISMEETEX:

- ERITE (XR) : RAEE. B8, KSZigE | Achieve high performance...
- ESEE: DAEEERE, REEEDSET

Build it quickly

...at scale
- EEBE: INTSEEHBIIEGTER
. EEMEEE: AR ...for new workloads out-of-the-box
- EEFHTIE: ...all while being cost effective

,E&,E'\?@EEE %g#@ <28 >

*&

AINNE

 {HE5FTPU v1, TPU v2i94%(0 B Eh &%
- BEINEXFERS. AEEESFESS

BREMBBAPEFARE,. IREENRSLIEST

BEMMUKIRERThITHL RS, EiihES:

o3& E——Google TPU v2

JSDDR3FIHBM, IRHEEIHES
iENS-EEE, IBASERYE

BIEBEH FEHE

o
3

Sy »
A) N\

PEKING UNIVERSITY

- - DDR3 . >~ DDR3
PCle : PCle .
Queues Activation Ly I\m} ?:ll;)l(y Ll Activation | | |VI\|/lIJ altt|rpl>)l(y

g <>

Storage Unit Storage_ Unit
Activation Accu- Accu- Activation
Pipeline mulators mulators Pipeline
(a) (b)
-~ DDR3 < > DDR3
PCle : PCle -
Queues Mat'I'IX Queues Matrix
<> <> Multiply > <> Multiply
Vector Unit Vector Unit
Memory Memory
Activation .| Vector
Pipeline Unit
(c) (d)
<> HBM 4-” HBM ‘<-> Interconnect
v PCle
(E)ugulee; Matrix Queues Matrix
Multiply Multiply
Vector Unit Vector Unit
Memory } Memory v
Vector <. Vector
1 Unit Unit
(e) ()
<29 >

AINNE

CEE S r
+ SREITRIZE,

ISAL:

FiEME. RERE
- FBMETREETTRAI128 x 128RYBKENEES, 3%

E——Google TPU v2

UNIY

::@30:;.4%‘57

PEKING UNIVERSITY

itH, TEERE

Fbf16 (s1e8m7) SRiEFNIFP322NN

o PHAEFEE128 x 128/98kEIFE5I, MARTPU v1HIR)256 x 2562

Vector
Unit

Transpose /
Permute Unit

Link
Link
Link
Link

i

Vector

Memory

Interconnect

PCle
Queues

”AVEHH FRE71TE

|
Core 1 Scalar |
Unit : A
Matrix ! | 4 —1+
Multipl
lljnlurt) ’ E operations per
Vector ! operand ratio
Unit | 3
Transpose / :
Permute Unit I utilization
i | 2 — ratio
Vector | 1.7x
Memory I
------------------- SRR e A wo
(normalized) (normalized)
HBM | | I » Constant
| | | FLOPS
256x256 128x128 64x64
PCle
Queues (1X) (4X) (16)()

<30 >

AlNNiERZEE AR E——Google TPU v2

- AEITRRTHILIEE:

- SPREITRZ, 8/M%E R

- FIERETRERTIREIBA

GMTET1 28N BN

To Matrix
Units

Control from Scalar Unit

Vector

Control e L

|
I IIIII |
N eeasistiia
5 ALUO ALU1
<
> 32Kix32b | | 1
= Vector (Lane) [+—
@]
& Memory D
3 < | 32x32b Vector (Lane) x8
Reg File L
RSBl #FEHE

Units

From Matrix

C
C

»

£ <

<, “\ at >4

» o)

: s 5
N

Scalar TPU Core !
Unit |
Matrix
> Multiply
Unit
Vector
Unit | | Transpose /
Permute Unit

x128

X ¥

PEKING UNIVERSITY

<31 >

N It 7K F

Gios PEKING UNIVERSITY

AlNhE=RZR I ZE——Google TPU v2

- TPU v2BITFERES
- /F L1Fi%E8532MB
- 16GB HBM, #%5£97600 GB/s (TPU v15RFDDR3, #%£35930 GB/s)
- R LIEHBAHEEE, B MElEEER /500 Gbps, KRE2EEIR (Torus) RIFGFMEH
- BREXIHF256/TPURNIGRE

TPU Core | | | | TPU Core Link | | Link
! '
I Interconnect I |
Router Core = nteF{gﬁ?:rect <> Core
‘ :
PCle Widths (o of PCle Llnk Llnk
Queues Bandwidths Queues

,EE'*EEHH %gﬁ:@ <32>

AlNNiESELEta &2 EB——Google TPU v3

- £TPU v2a9Ef E, TPU v33i

T i

- FERESRIRERTTH K215
- BETIEMG, 8H

SR

+ IBHHBM&EEE30%, i KHBMBE2(F,
« RK3ZFF102440TPURYH &

TPU Core O |

Matrix
Multiply
Unit (2x)

- TieF, &

1RZEM 700 MHZIEHZEI 7940 MHz

FSSIGN »
NPT TS

PEKING UNIVERSITY

RAHEGSR30%, iXEIS/MER650 Gb/s

' TPU Core 1

Scalar
Unit

Matrix
Multiply
Unit (2x)

PCle
Queues

BIEBEH FEHE

Interconnect
Ix

PCle

Queues

<33>

AlNMESR LA E——Google TPU v3 NEEES

Build it quickly
Achieve high performance...
...at scale

...for new workloads
out-of-the-box

...all while being cost effective

ER A
s

EEE %"’é#@, <34 >

I

C

*ﬁ

(D »
N e 7)

3 PEKING UNIVERSITY

AlNMiEzESRi9%& E——Google TPU v3

Build it quickly e Co-design: simplified
hardware with software
predictability (e.g., VLIW,
...at scale scratchpads)

Achieve high performance...

...for new workloads

e Willingness to make
out-of-the-box

tradeoffs

...all while being cost effective

ER A
Y

SEH REHE <35>

I

C

*ﬁ

AlNMiEzESRi9%& E——Google TPU v3

Build it quickly
Achieve high performance...
...at scale

...for new workloads
out-of-the-box

...all while being cost effective

ER A
s

EEHR REHE

I

C

Compute density with
bfloat16 systolic array

HBM to feed the compute

XLA compiler
optimizations

(D »
N e 7)

3 PEKING UNIVERSITY

< 36 >

*ﬁ

AlNMiEzESRi9%& E——Google TPU v3

(D »
NETES

PEKING UNIVERSITY

Build it quickly e System-first approach
Achieve high performance... o Interconnect with a
...at scale familiar interface for

ease-of-use
...for new workloads

out-of-the-box

...all while being cost effective

ER A
Y

SEH REHE <37>

I

C

*ﬁ

0}3&ZB——Google TPU v3

AINNE

Build it quickly
Achieve high performance...
...at scale

...for new workloads
out-of-the-box

...all while being cost effective

ER A
s

EEHR REHE

I

C

Flexible big data cores
with principled linear
algebra framework

XLA compiler

HBM capacity

(D »
N e 7)

3 PEKING UNIVERSITY

< 38 >

*ﬂ'

0}3&ZB——Google TPU v3

(D »
N e 7)

3 PEKING UNIVERSITY

AINNE

Build it quickly e Matrix Unit efficiency
Achieve high performance... e Simplicity
...at scale
e High performance for

...for new workloads good perf/$

out-of-the-box

...all while being cost effective

ER A
s

88 HA F5HE <39>

I

C

